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Abstract

The statistical behavior of the fluid and particle temperatures in homogeneous two-phase turbulent flows are inves-
tigated via direct numerical simulations. The effects of the flow Reynolds number (Re;), the Prandtl number (Pr), the
particle response time (t,), the ratio of specific heats (x), and the mass loading ratio (¢,,) on the fluid and particle
temperature statistics are studied. The results show that the particle temperature intensity decreases as the magnitudes
of 7,, Pr, a, and Re; increase. Also, by decreasing the magnitudes of o and/or Pr, the difference between the particle
velocity and temperature diffusivity coefficients increases. The ratio of particle to fluid temperature intensities and the
dissipation rate of the fluid temperature are affected by two-way coupling effects and decrease as the mass loading ratio
increases. Additionally, with increased mass loading, the probability density function of the fluid temperature deviate
more from the Gaussian distribution. © 1998 Elsevier Science Ltd. All rights reserved.

Nomenclature

Cp drag coefficient

D' diffusion coefficient of the fluid particle velocity
DY diffusion coefficient of the fluid particle temperature
D! diffusion coefficient of the particle velocity

DY diffusion coefficient of the particle temperature

d, particle diameter

F; velocity forcing function

k magnitude of the Fourier wave number

m,, particle mass

Nu Nusselt number

N, total number of particles

Pr  Prandtl number

p pressure

R! auto-correlation coefficient of the fluid particle vel-
ocity

R? auto-correlation coefficient of the particle velocity
RY. auto-correlation coefficient of the particle tem-
perature

Re, reference Reynolds number

Re, particle Reynolds number
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Re, Taylor micro-scale Reynolds number
St Stokes number

S, heat source term

Sy ith component of the momentum source term
t time

T fluid temperature

T, particle temperature

u; ith component of the fluid velocity U

v; ith component of the particle velocity V
X, Lagrangian coordinates

x; Eulerian coordinates.

Greek symbols

o ratio of the specific heat of the particle to that of the
fluid

¢ dissipation rate of turbulent kinetic energy

g, rate of energy transfer by particle drag force

er dissipation rate of the fluid temperature

n Kolmogorov length scale

® temperature forcing function

¢ correlation coefficient between temperature and its
dissipation rate

p fluid density

p, particle density

1, Kolmogorov time scale

7, Eulerian integral time scale
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7, particle response time
¢,, mass loading ratio.

1. Introduction

Within the past few decades, particle-laden turbulent
flows have been extensively studied via theoretical, exper-
imental and numerical methods (for the latest reviews
see Refs [1-6]). Most of the theoretical studies are based
on the Lagrangian statistical approach. Lagrangian
analysis of turbulent flows dates back to Taylor [7] who
relates fluid particle dispersion to the Lagrangian auto-
correlation of fluid elements. Since then, Taylor’s theory
has been the basis of many other theoretical inves-
tigations involving the dispersion of fluid and light tracer
particles [8—10]. Contrary to light tracer particles, heavy
particles do not follow turbulent fluctuations of the car-
rier fluid, making their statistical analysis more complex.
Theoretical studies of heavy particle motion have been
mainly focused on the effects of the turbulence, the par-
ticle inertia, and the gravitational drift on the dispersion
of particles [11-15].

The statistical behavior of heavy particles has also been
studied via numerical methods [16]. In these studies, the
velocity of the fluid surrounding the particle is often
calculated based on the turbulence models for the fluc-
tuating velocity. Assessments of such models are difficult
due to the lack of sufficient experimental data. The exper-
imental studies of particle-laden turbulent flows are
somewhat limited (e.g., [17-19]) primarily due to the
difficulties in Lagrangian measurements.

Some of the constraints involved in the numerical
analysis of particle laden turbulent flows are avoided in
direct numerical simulations (DNS) in which all scales of
the fluid motion are resolved [20]. Riley and Patterson
[21] were the first to present a full simulation of small
particle motion in a decaying isotropic flow field. Their
simulation shows that in the absence of gravity, the La-
grangian auto-correlation of the particle velocity
increases as the response time (inertia) of the particles
increases. The dispersion of heavy particles in forced and
decaying isotropic turbulence is studied by Squires and
Eaton [22] and Elghobashi and Truesdell [23]. In agree-
ment with the theoretical findings [13, 24], their results
indicate that in both decaying and forced turbulence the
dispersion of the heavy particles is greater than that of
the fluid particles. The effect of heavy particles on the
carrier fluid in forced turbulence was studied by Squires
and Eaton [25] via DNS. The results of this study indicate
that the particle field attenuates an increasing fraction of
the turbulence kinetic energy as the mass loading ratio
increases.

None of the studies mentioned above consider the heat
transfer between the particles and the carrier fluid. The
behavior of the particle and carrier fluid temperatures in

two-phase turbulent flows is of intense practical import-
ance. For example, evaporation and combustion of par-
ticles in industrial devices, as well as the dispersion of
thermal pollutants in the atmosphere and ocean depend
strongly on the thermal transport between the phases.
There are only a few investigations which study the tem-
perature variations in two-phase turbulent flows. Soo [26]
and Shraiber et al. [27] consider some of the statistical
properties of the particle temperature. Using a theoretical
model, Yarin and Hetsroni [28] show that an increase in
the particle mass loading ratio and particle specific heat
leads to a reduction in the intensity of the particles and
carrier fluid temperatures. They also show that the fluc-
tuations of the carrier fluid temperature increase and
those of the particles’ temperature decrease as the mag-
nitude of the Prandtl number increases. The dynamics of
evaporating particles in a heated jet is studied numerically
by Park et al. [29]. The results of this investigation indi-
cate the complexities of heat and mass transfer in two-
phase free-shear flows. Although the information pro-
vided in Refs [26-29] are valuable, they are not obviously
sufficient. More elaborate studies are required to fully
understand and to model the temperature behavior in
two-phase turbulent flows.

The primary objective of this work is to study the
response of the particle temperature to the variations in
the fluid temperature, and to examine the effect of the
particles on the fluid temperature field. The influence of
various flow and particle parameters on the statistics are
examined in detail. The analysis is restricted to dilute
particle motions in homogeneous incompressible tur-
bulent flows. The homogeneity assumption avoids the
complexities that are involved in nonlinear mean trans-
port of statistical quantities and can be realized in several
experimental setups such as grid turbulence and the plug
flow reactor. The incompressibility is a valid assumption
if the intensity of temperature fluctuations is small [30,
31].

2. Governing equations and computational
methodology

In this section, the governing equations are presented
and the computational methodology used for solving
these equations is discussed. The transport of the carrier
fluid velocity and temperature are treated in the Eulerian
frame of reference and are governed by the continuity,
momentum and energy equations which include source
terms accounting for the presence of the particle phase.
These source terms represent (the momentum and the
thermal) coupling between the carrier fluid and the par-
ticles. For a constant density flow, the normalized form
of the fluid equations are expressed as:
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The variables F; and ® are the stochastic forcing func-
tions which are introduced to maintain the stationarity
of the velocity and temperature fluctuations [32]. The
turbulent scales remain invariant and the statistical
analysis are convenient when the flow is statistically
stationary. All variables in the above equations are nor-
malized using reference length (L), velocity (U,), tem-
perature (7,) and density (p,) scales (the non-dimen-
sional density is unity). Consequently, the two important
non-dimensional parameters are the box Reynolds num-
ber (Rey = poUyLo/pt, p is the fluid viscosity) and the
Prandtl number (Pr). The effects of the particles on the
carrier fluid are expressed through the momentum (S,,,)
and heat (Sy) source terms as defined below.

The main assumptions in deriving the particle equa-
tions and the associated source terms are that the particles
are fine and heavy and the mixture is dilute. Under these
conditions, particle collisions are infrequent and particle—
particle interactions can be neglected. The transport
properties of spherical particles in non-uniform flows
have been the subject of numerous investigations [33—
35, 6]. Starting from simple Stokes relations, complex
empirical relations have been proposed. For the range of
particle Reynolds numbers considered here, it is adequate
to use the modified Stokes relations for the particle trans-
port coefficients [36, 6]. Radiative heat transfer effects
and particle acceleration due to forces other than the
drag force are ignored. Consequently, the evolution of
the particle displacement vector (X)), the velocity vector
(v;)) and the temperature (7,) are governed by the fol-
lowing equations:

dXx;

=y, 4
QU 4)
dv;  CpRe,
at = g ) )
dT, Nu
dr 30(Pr‘cp(T* —T) ©)

where the asterisk refers to the local fluid variables which
are interpolated to the particle position. The non-dimen-
sional particle time constant (z,,) is;

_ Reoppdy  py Reg (6m,)\*?
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The magnitude of p,, is 1000 unless otherwise stated. The
particle drag coefficient (Cp), the Reynolds number (Re,)

and the Nusselt number (Nu) in the modified Stokes
relations are expressed by [37]:

~ 24(1+0.15Re%*7)

Co R ®)
Re, = Re,p*d,|[U*—V]| 9)
Nu = 2+0.6Re* Pr33. 10)

The volumetric source terms appearing in the fluid equa-
tions (S,; and S},) are evaluated based on the discrete
Particle-Source-In Cell (PSIC) model [36] and are ex-
pressed as:

1 do; 1 CpReymy,
Su ==y {’”sz}_—mf { 2e, 0

an
1 dr7, 1 Num,
u= - AVZ{“'"P dt }_ AV {3Prrp(T*_Tp)}
(12)

where the summation is taken over all particles in the
volume AV = (Ax)* (Ax is the grid spacing) centered at
each Eulerian (grid) point. In the derivation of equations
(3) and (12), the heat generated by the viscous dissipation
of the turbulent motions as well as that due to the particle
drag force are neglected.

The transport equations of the fluid mass, momentum
and heat (equations (1)—(3)) are integrated using the
Fourier pseudo-spectral method with triply periodic
boundary conditions [38, 39]. All simulations are con-
ducted within a box containing 96° collocation points.
Aliasing errors are treated by truncating the Fourier
values outside the shell with wavenumber
Knax = \/EN/3 (where N is the number of grid points in
each direction). The explicit second order accurate
Adams—Bashforth scheme is used for time advancement.
The forcing scheme is similar to that of Eswaran and
Pope [40] in which the spectral contents of velocity and
temperature fluctuations within the wavenumber band
0<|K| <k (K is the wavenumber vector and
kg = Zﬁ is the forcing radius) are kept statistically con-
stant by randomly forcing all nodes within that band.
The magnitudes of the flow Reynolds and Prandtl num-
bers vary for different cases but are selected such that all
variables are adequately resolved. This is enforced by
keeping the magnitude of nk,.. (1 is the Kolmogorov
length scale) greater than 1.4.

Once the fluid velocity and temperature fields are
known, the particle momentum and heat transfer equa-
tions (equations (5)—(6)) and the particle trajectory equa-
tion (equation (4)) are integrated via the second order
Adams—Bashforth scheme. The evaluation of the fluid
quantities at the particle locations is based on a fourth
order accurate Lagrangian interpolation scheme. The
number of particles varies in different simulations but is
never less than 28°. This number of particles is sufficient
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to calculate the statistics with less than 1% error. In
the discussion of the results below, {{ >> denotes the
Lagrangian average taken over ensembles of particle or
fluid elements. The Eulerian average is denoted by < ) and
is conducted over all collocation points. Time averaged
statistics are denoted by an overbar and are performed
after a stationary condition is sustained. The ‘prime’
denotes the mean subtracted quantity.

3. Results

The results of our simulations indicate that the im-
portant statistical quantities such as the Lagrangian auto-
correlation coefficient of particle temperature and the
ratio of particle to fluid temperature intensities are insen-
sitive to the fluid temperature intensity (or the amplitude
of the temperature forcing function). Therefore, only
results of those simulations in which the fluid temperature
intensity is small are considered. Additionally, the mean
values of the particle velocity and temperature are con-
stant and equal to those of the carrier fluid. In stationary
turbulence, the long time values of the particle and fluid
statistics are independent of the initial conditions and are
characterized by the fluid and particle parameters (i.e.,
T, Pr, o, ¢, and Re;). The influence of these parameters
on the statistics are studied in both one- and two-way
coupling formulations. In the former, the mass loading
ratio is negligible and the effects of particles on the flow
are ignored. In the latter, the effects of particles on the
flow are taken into account.

3.1. One-way coupling

The results of previous studies indicate that the stat-
istics of the particle velocity are strongly dependent on the
particle inertia or particle response time, 7. The statistical
behavior of the particle temperature, in addition to 7,
depends on « and Pr. This is indicated in equation (6)
and is also illustrated in Fig. 1 where the ratio of the
particle to fluid temperature intensities (root mean
squares) is considered. Figure 1(a) shows that the ratio
of the temperature intensities monotonically decreases as
the magnitude of the particle response time increases.
This is understandable since by increasing the particle
response time, the ability of the particles to follow the
fluctuations of the fluid velocity and temperature reduces.
However, the rate at which the particle temperature
intensity decreases with t, is lower for lower values of
Pr. With decreasing the magnitude of Prandtl number
(increasing the thermal diffusivity), the particle tem-
perature becomes closer to the surrounding fluid tem-
perature and less sensitive to the magnitude of the particle
response time. The particle temperature intensity also
decreases as the magnitude of o increases (Fig. 1(b)).
With increasing the thermal capacity of the particles,
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Fig. 1. The variation of the ratio of the particle to fluid tem-
perature intensities with, (a) 7,/t and Pr (« = 1); (b) « and Pr
(t, = 3); (c) «Pr. For all cases Re; = 41.9.

their ability to adjust to the surrounding temperature
reduces and their temperature intensity decreases. For
o < 1, the particle temperature intensity could be larger
than the particle velocity intensity. For a > 1, the fluc-
tuations of the particle temperature are small and more
sensitive to the variations in particle response time. The
results in Fig. 1(a) and (b) are qualitatively consistent
with the theoretical results of Yarin and Hetsroni [28]
and can be further explained by considering equation
(6). In accord with this equation, it is expected that by
increasing t,, Pr and « or by decreasing Re, (decreasing
Nu), the particle temperature intensity decreases. Equa-
tion (6) also implies that for constant 1, particle tem-
perature statistics are only function of the magnitude of
oPr. However, the structure of the fluid temperature field,
especially at the small scales, depends on the magnitude
of Pr and even for a fixed value of aPr, the particle
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temperature statistics could be a function of Pr. The
results in Fig. 1(c) indicate that the values of
KT H)' 2 KT? )" are almost independent of the mag-
nitude of Pr. This suggests that the low order moments
are not significantly dependent on the Prandtl number as
long as the magnitude of «Pr is kept constant.

To assess the effect of the flow Reynolds number on
the particle temperature, it is necessary first to examine
the variation of the particle velocity with Reynolds
number. In Fig. 2(a), the ratio of the particle velocity
variance (energy) to that of the carrier fluid
(DK™, v = 1/3vw,, w” = 1/3uu,) for different
and Re; is considered. The results in this figure indicate
that the energy ratio decreases as 7, and/or Re; increases.
With increasing the Reynolds number, the associated
time scales of the flow at large scales (i.e., Eulerian eddy
turn over time) and small scales (i.e., Kolmogorov time
scale) are decreased. Therefore, the ‘effective’ response
time of the particles increase and the energy ratio
decreases. It should be mentioned that the ‘actual’ par-
ticle response time, £, = 7,/(1+0.15Re)**”) is different
than t, which is considered in Figs 1 and 2. However, for
the range of particle Reynolds numbers considered here,
the difference between %, and t, is small and has no
significant effect on the results.

The scaling of ({v"*»>/{u’*) is very important in mode-
ling of the particle-laden turbulent flows [15, 41]. An
important parameter for the scaling of particle statistics
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Fig. 2. The variation of the ratio of the particle to fluid velocity
variances (energies), with (a) 1, (b) 7,/7;. For all cases « = 1 and
Pr=0.7.

with flow Reynolds number is the Stokes number, St [42,
43], which is the ratio of the particle response time to an
‘appropriate’ time scale of the turbulence. The choice of
a proper flow time is, however, somewhat ambiguous.
The best time scale for scaling of the low order statistics
is the characteristic time associated with the large scales.
This is demonstrated in Fig. 2(b), where it is shown that
the values of ({v"*»>/<{u’*) at different Re; collapse when
the particle response time is normalized by the Eulerian
eddy turn-over time, 7, (i.e., St = 1,/7;). Other results
(not shown) also suggest that the Kolmogorov time scale
(ty) is appropriate for scaling of {{v"*)»/{u’*) if the mag-
nitude of 7, is close or less than 7, (i.e., St, = 7,/7, < ).
As St exceeds from unity, the results for <{v'*>>/{u’*)
at different Re, deviate more significantly from each
other. This is explained by considering the fact that the
heavier particles interact more with the large scale flow
structures. We also found that the characteristics time
1= c{u*>/e (¢ is a constant), which appears in the
Hinze-Tchen relation [41] is only appropriate for scaling
of ({v?»>/Ku*> when the flow Reynolds number is
sufficiently large. Note that the proper time for scaling of
the other particle statistics may be different than that
observed for {v'*»>/<u’*>. For example, our results
suggest that the particle Reynolds number is properly
scaled when the particle response time is normalized by
the Kolmogorov time.

The effect of the flow Reynolds number on the particle
temperature is similar to that discussed above for the
particle velocity. In Fig. 3(a), the variations of
AT = (T —T})*>>/KT"*) with particle time constant
for different flow Reynolds numbers are shown. With
increasing the particle time constant, the particle tem-
perature deviate more from the local fluid temperature
and AT increases. Furthermore, with increasing the flow
Reynolds number the effective response time of the par-
ticle is increased, accompanied by a corresponding
increase in A7T. Additionally, for the cases considered in
Fig. 3, « = 1, Pr = 0.7 and the structure of the carrier
fluid temperature and velocity fields are not very differ-
ent. Therefore, as shown in Fig. 3(b) the Eulerian eddy
turn-over time is also appropriate for scaling of AT. Our
results also indicate that 7, is the proper time scale for
scaling of ((T,*>>/KT"*> (similar to {<v*)>/{u*)) at
different Re;.

In the theoretical analysis of particle-laden turbulent
flows, the momentum and the heat transfer between the
particles and the carrier fluid are usually evaluated via
the relations C, = 24/Re, and Nu = 2. To assess the
influence of the non-linearity of the transfer coefficients,
the time averaged particle statistics for various particle
Reynolds numbers are considered in Table 1. For all
cases considered in this table, Re;, = 41.9, Pr = 0.7 and
o= 1. The particle Reynolds number is varied by
changing the particle density while the particle response
time is kept constant (t, = 6) for all cases. Additional
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Fig. 3. The variations of AT = {{(T'—T,)*>>/<T"*> with (a)
7,5 (b) 7,/7. For all cases o = 1 and Pr = 0.7.

results are also provided by conducting DNS with
Cp = 24/Re, and Nu = 2. The results in Table I indicate
that the magnitude of {{v*>)/<{u*> is increased by
10.4% when {(<{Re,») increases from 0 to 1.9. The
corresponding increase in the magnitude of
(TP HY>KT*y is 16.4%. Tt is also shown that the
difference between the particle temperature and the local

Table 1
The variations of the particle statistics with the particle density

KT 1_<1_ <<z/2>>“2>sa
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fluid temperature decreases as the particle Reynolds num-
ber increases. The non-linearity of the drag and heat
transfer coefficients result in higher values for these
coefficients; therefore, the rate of heat transfer between a
particle and its surrounding fluid increases, accompanied
by an increase in their temperature correlation. Based on
the results shown in Table 1, it is concluded that the non-
linearity of the transfer coefficients have small effects on
the particle statistics when the particle Reynolds number
is less than unity.

By relating the Lagrangian equations of particle vel-
ocity and temperature, Yarin and Hetsroni [28] obtain:

Nu
Pr

, 13)
<T/2>]¢‘2 <u/>l,r2
In deriving equation (13), it is assumed that the inter-
actions between the particles and the fluid are solely due
to the drag force and thermal convection. These inter-
actions are expressed by the relations Cp, = 24/Re, and
Nu = 2. To assess the validity of equation (13), the ratio
of the particle to fluid temperature intensities based on
equation (13) ((TR)weory) and those via DNS data
((TR)pns) are compared in Table 1 and Fig. 4. The mag-
nitude of Nu in equation (13) is evaluated from equation
(10) based on the average value of particle Reynolds
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Fig. 4. The variation of the ratio of the model to DNS values of
LT yy' 2 [{T?>"* with o. For all cases Re;, = 41.9 and 7, = 6.

Py Co Nu LReyy  LKuDHYKu?y  KTP)OKT?y LT =T )KT?>  (TR)ueory/ (TR)ps
250 Equation (8) Equation (10)  1.90 0.566 0.536 0.685 1.113
500 Equation (8) Equation (10)  1.37 0.556 0.525 0.694 1.098
1000 Equation (8) Equation (10)  0.97 0.553 0.509 0.704 1.082
4000 Equation (8) Equation (10)  0.50 0.533 0.497 0.718 1.063
16000 Equation (8) Equation (10)  0.25 0.523 0.480 0.727 1.046
1000 24/Re, 2 0.0 0.507 0.448 0.752 0.997
1000 Equation (8) 2 0.97 0.546 0.448 0.749 1.037
1000  24/Re, Equation (10)  0.97 0.507 0.513 0.706 1.050
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number. The results in Table 1 suggest that by increasing
{{Re,»>, the magnitude of (TR)eory €Xceeds more sig-
nificantly from that of the (T'R)pns. This implies that the
predictive capability of equation (13) reduces as particle
Reynolds number increases, which is expected due to
non-linearity of the transfer coefficients. The difference
between DNS and theoretical results is minimum (about
0.3%) when the particle drag and heat transfer
coefficients in DNS are evaluated via linear relations. Our
results also indicate that the ratio (7R)heory/(TR) pns does
not vary noticeably as the magnitudes of 7, and Re, vary.
However, this ratio varies significantly with Pr and o.
This is observed in Fig. 4, where it is shown that for
small values of «Pr (< 1), equation (13) predicts the DNS
results with reasonable accuracy. For large values of o Pr,
the difference between the DNS and the model values is
significant. Also, for large values of «Pr, our results indi-
cate that (T'R)wmeory/ (TR)pns increases slightly when t,/7,
(or Re,) increases. This suggests that the non-linearity of
the transfer coefficients is not responsible for the sig-
nificant difference between the theoretical and numerical
results at high o Pr values.

In Fig. 5, the temporal evolution of the auto-cor-
relation coefficients of the particle velocity (R?), and tem-
perature (RY) for different particle response times are
shown. The time 7}, is the time normalized by the Eulerian
eddy turn-over time. The coefficients R? and RY represent
the memory effects for the particle velocity and tempera-
ture, respectively and are calculated when particles reach
a stationary state. These coefficients are used to obtain
the momentum and the thermal diffusion coefficients (see
below) and are defined as:

Rty el i
K 1))t ]
Ry - ST Ty ) s

[T 1)L T2 (t + O]

where the auto-correlation coefficient of the particle vel-
ocity is defined as average of directional coefficients, and
1, 1s the starting time for the calculation of the Lagrangian
statistics. In statistically stationary flows, ¢, is arbitrary
and (v}, 2 (1o +1)>> = v}, (t,) ). Consistent with pre-
vious observations [24, 18, 22], it is shown in Fig. 5(a)
that the auto-correlation coefficient of the particle vel-
ocity increases as the particle response time (inertia)
increases. The memory of the particle to its previous
velocity increases as the particle inertia increases, thus
increasing the correlation coefficient over that for fluid
particles. A monotonic increase with 7, is observed for
R?P. The Lagrangian auto-correlation coefficient of par-
ticle temperature, in addition to t,, is dependent on the
magnitudes of Pr and «. For small values of Pr (~0.25),
the rate of heat transfer between the particles and the
fluid is significant and particles quickly adjust to the
surrounding fluid temperature. Consequently, the auto-
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Fig. 5. Temporal variation of the auto-correlation coefficient of
the particle velocity and temperature. (a) R?; (b) RS (Pr = 0.25);
(c) R} (Pr=1.7). For all cases Re; =41.9 and o = 1.

correlation coefficient of the particle temperature is not
significantly dependent on the magnitude of ¢, (Fig.
5(b)). For higher Prandtl numbers (~ 1.7), the response
of particles to the variations in local fluid temperature is
slow and the effect of 7, on R% could be important. It is
shown in Fig. 5(c), that for particles with response times
close to or smaller than the Kolmogorov time scale, the
effect of particle inertia on R% is not significant even when
Pr = 1.7. As the particle time constant exceeds the Kol-
mogorov time scale, RY is noticeably increased with t,,.
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Unlike R?, a monotonic increase with 7, is not observed
for RY. The results shown in Fig. 5(b) and (c) also suggest
that the effect of Pr on RY is dependent on the particle
response time. We have found that for 7, > 7, the instan-
taneous values of RY increase with Pr. As equation (6)
implies, the rate of heat transfer between the phases
depends on the temperature difference between the par-
ticle and the surrounding fluid element. This temperature
difference is relatively lower when the particles are light.
Consequently, the rate of heat transfer is lower for light
particles and RY is less affected by the magnitudes of 7,
and Pr.

The effect of « on R% is shown in Fig. 6, where the
temporal evolution of RY for o = 0.25 and 5.0 are con-
sidered. For a < 1, the particles rapidly respond to the
surrounding fluid temperature. In this case, as shown in
Fig. 6(a), the effects of Pr (also 7,) on R% are relatively
small. For large values of ¢, particles keep their thermal
identity as they are less sensitive to the variations of
the carrier fluid temperature. For this case, the auto-
correlation coefficient of the particle temperature is con-
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Fig. 6. Temporal variation of the auto-correlation coefficient of
the particle temperature. (a) « = 0.25; (b) « = 5. For all cases
Re; =419 and 7, = 3.

siderably more sensitive to the magnitudes of Pr and T,
(Fig. 6(b)).

Taylor [7] formulated the diffusive nature of turbulence
by relating the coefficient of fluid particle diffusion (DF)
to the Lagrangian auto-correlation coefficient of the fluid
particle velocity (R'). For large diffusion times, D!, is
expressed by [44]:

D' = <u’2>J Ri(7)dr. (16)
0

The value of D as given by equation (16) would also be
valid for the transport coefficient of a scalar quantity
such as temperature if there were no exchange of this
quantity with the surrounding fluid along the trajectory
of the fluid particle. However, since the fluid particle
consists of very large number of molecules, there is at
least a molecular transport between the fluid particle with
its surrounding. Therefore, the diffusion coefficient of
fluid particle temperature (DY) is expected to be different
from Df. Hinze [44] proposes:

0

Dy = <u’z>J SA, DR, (7) de a7
0

where A is an exchange coefficient and f(A, 1) accounts

for the effect of the exchange along the path of the fluid

particle. The function ‘f’ is, in general, a complex function

of A and 7. An exponential model of f(A, 1) = exp(—Ar)

has been suggested [44].

The magnitude of D!, and D' evaluated from equations
(16) and (17) represent the long time values of the fluid
particle velocity and temperature diffusivity coefficients.
For heavy particles, one can similarly define the
coefficient of particle momentum diffusion (D?) in terms
of the Lagrangian auto-correlation coefficient of particle
velocity [12]:

D! = <v/2>J RE (1) dr. (18)
0

The difference between the fluid velocity and temperature
diffusivity coefficients is expressed via the function f.
Similarly, we introduce the function f* that accounts for
the exchange of particle heat with the surrounding fluid
along the particle path. With this, the particle tem-
perature diffusion coefficient, DY, is calculated as:

~ RYORI(0) de (19)

0

D$:<U5J

where it is assumed that /7 = R%. When the heat transfer
between particles and the fluid is negligible (e.g.,
oaPr> 1), RY ~ 1 and as equations (18) and (19) suggest,
the long time diffusion of particle temperature is the same
as that of the particle velocity (D% = D?).

In Fig. 7, the variation of D%/D} with o and t,/7, for
different Pr values are shown. With increasing « and/or
Pr, as suggested by Fig. 6 and equation (19), D% increases
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and becomes closer to D¥. This is shown in Fig. 7(a). It
is also shown in this figure that D% varies more sig-
nificantly with « and Pr as the magnitude of « Pr increases.
The ratio D%/D? is almost independent of o and Pr when
the rate of heat transfer is high. The effect of particle
inertia on D%/D? is shown in Fig. 7(b). For Pr = 0.25,
the ratio D%/D? decreases as 7,/ty increases. However, as
the magnitude of Pr increases, the effect of t, on D%/D?
is decreased. With decreasing the size of the particles, the
effect of Pr (and o) on DY is decreased. This is under-
standable since the rate of heat transfer and therefore
RY. is less sensitive to the magnitude of Pr as the size of
the particle decreases (Fig. 5).

3.2. Two-way coupling

Two-way coupling effects are discussed in this subsec-
tion. An important parameter in this study is ¢,, which
is varied by changing the number of particles while keep-
ing 7, constant. As pointed out by Squires and Eaton [25],
the particles act as an additional source of dissipation
of turbulent kinetic energy. As a result, in stationary
turbulence the turbulent kinetic energy decreases as the
mass loading ratio increases. The average dissipation rate

of the turbulent kinetic energy also decreases as ¢,,
increases. This is observed in Fig. 8(a), where it is shown
that by adding more particles to a stationary flow, ¢
decreases more and after a transient time approaches a
stationary value. Initially, the particles are distributed
uniformly throughout the domain and have the same
velocity as that of the surrounding fluid elements. There-
fore, there is a transient time during which both particles
and carrier fluid adjust to their new conditions. This
transient time was found to be about two to three eddy
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Fig. 8. Temporal variations of the average dissipation rate of
energy, (a) & (b) &o0 (¢) &,. For all cases 7, = 3.6.
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turn-over times, close to the values reported by Squires
and Eaton [22]. After this transient time, the balance of
energy requires that the energy input by the forcing be
the same as the total rate of dissipation of the turbulent
kinetic energy (&,,) by the fluid and particles. As shown
in Fig. 8(b), the long time values of ¢, remain fairly
constant and independent of the magnitude of ¢,,. There-
fore, the energy added by forcing function to the mixture
also remains fairly constant and unaffected by the
particles. This indicates that the results obtained here are
not contaminated by forcing. The initial increase in ¢,
values with ¢,, is required to decrease the turbulence
energy to its lower stationary level. The decrease of &
with the increase of mass loading can be explained by
considering the evolution of the average rate of ‘dis-
sipation’ of energy by the particle drag force,

& = <Z{%(ﬁ—w)u?}>. (20)

Tp

It is to be noted that ¢, may have both positive and
negative signs. Therefore this term may remove or add
energy to the turbulent kinetic energy, although it refers
to the ‘dissipation’ term here. For the cases considered in
this study, ¢, always removes energy from the turbulent
kinetic energy.

Figure 8(c) shows that the values of ¢, increase as the
mass loading ratio (or the number of particles) increases.
This observation together with the previous observation
that the long time values of ¢, = ¢,+¢ are nearly inde-
pendent of the mass loading, explains the decrease of ¢
with the increase of mass loading. Our results (not
shown) also indicate that the ‘dissipation’ of energy by
each individual particle (¢,/N,) decreases as mass loading
ratio increases. The reason is that with increasing the
mass loading, the velocity vector of the surrounding fluid
aligns better with the direction of the particle trajectory
and also the magnitudes of velocities are smaller. Conse-
quently, the particle drag force and the particle Reynolds
number are lower for higher mass loadings. Since by
increasing ¢,,, the dissipation of energy by each indi-
vidual particle decreases, ¢, and ¢ should not vary linearly
with ¢,,. This is observed in Fig. 8(c), where it is shown
that the rate of increase of ¢, with ¢,, decreases as the
magnitude of ¢,, increases.

The modulation of the flow by the particles may also
depend on the particles’ response time, as particles with
different inertia correlate differently with different scales
of the flow. For the range of parameters considered, the
magnitude of t, does not have a significant impact on the
evolution of the turbulence energy. This is observed in
Fig. 9(a), where it is shown that for constant mass loading
ratio, the turbulent energy does not vary appreciably
as 1/t varies. For small particles, the main interaction
between the particles and the fluid occurs at small scales.
Therefore, the turbulence energy is not significantly
dependent on the size of particles. However, the dis-
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Fig. 9. Temporal variations of the carrier fluid (a) velocity vari-
ance (energy); (b) dissipation rate of energy for different particle
response time and for ¢, = 0.4.

sipation rate of the turbulence kinetic energy noticeably
decreases as the size of particles increase (Fig. 9(b)). This
is true since for stationary turbulence, the total energy
dissipated by the fluid and particles is constant, equal to
the forcing energy, and independent of the size of
particles. Therefore, with increasing 7, ¢ has to decrease
because the drag force and ¢, increase.

The effects of particles on different scales of the fluid
velocity and temperature are considered in Fig. 10, where
the three-dimensional velocity and temperature spectral
density functions (£, Ey) for ¢,, = 0 and 0.4 are shown.
Consistent with the results of Squires and Eaton [25], it
is observed that the high wavenumber values of the fluid
velocity spectrum are significantly increased by the
particles. The effect of particles on the fluid velocity dis-
sipation spectra is similar. The three-dimensional fluid
temperature spectrum also exhibits similar behavior to
that of the velocity, as the results in Fig. 10 indicate
that the high wavenumber spectral values of the fluid
temperature are increased by the particles. This suggests
that the thermal and momentum interactions of the par-
ticles and the carrier fluid at small scales are qualitatively
similar. The modification of the fluid velocity and tem-
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perature fields also results in the variation of the particle
temperature statistics due to two-way coupling effects.
An example is the auto-correlation coefficient of the par-
ticle temperature, which is shown in Fig. 11 to increase
with ¢,,. Additionally, Fig. 11 illustrates that for two
cases with the same mass loading, the values of RY
decrease significantly when the effect of the particles on
the fluid velocity field is eliminated (S,,, = 0). However,
the values of RY in the case that ¢, = 0.8 and S,;, =0
are still higher than those in the case with ¢,, = 0. This
suggests that RY. increases with ¢,, for two reasons. First,
the particles correlate more with the path of the fluid
elements due to momentum coupling. Second, the devi-
ation between the particle and fluid temperatures
decreases due to thermal coupling.

Time averaged values of some other statistical quan-
tities which are affected by two-way coupling are listed
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Fig. 11. Temporal variation of the auto-correlation coefficient
of the particle temperature for 7, = 3.6, « = 1 and Pr = 0.7.

in Table 2. The first four rows in this table represent the
results for mass loading ratios from 0-1.1. The last row
corresponds to the case with ¢, = 0.8, S,,; = 0. Expect-
edly, with increasing the mass loading ratio the mag-
nitude of Re, decreases. Consequently, the time scales
associated with fluid velocity field increase and the effec-
tive response time of the particles decrease. Additionally,
with an increase in the mass loading, the coupling
between velocity and temperature of the particles with
those of the surrounding fluid element increases. As a
result, ((Re,>), T, KTy*»)[KT?>, and & all
decrease. The results in Table 2 also demonstrate that the
magnitudes of <{T}>>>/<T"*> and &/(g7),—, for the case
with ¢,, = 0.8, S,,; = 0 are lower than those for the case
with ¢, = 0.8, S,,; # 0. These results are in accord with
those shown in Fig. 11, and suggest that the effects of
fluid-particle thermal and momentum coupling are both
important.
Also listed in Table 2 is the correlation coefficient
between the temperature and its dissipation rate,
v2
= Ty @
(T?)er>

The correlation between temperature and its dissipation
reflects the correlation between large and small scale tem-
perature fluctuations [45, 46]. This correlation is also
an indicator of the ‘non-Gaussianity’ of the probability
density function (PDF) of the temperature. The results
in Table 2 show that with increasing the mass loading,
the correlation between temperature and its dissipation
increases and the PDF of temperature departs more from
a Gaussian distribution. Another indicator of the non-
Gaussianity of the temperature PDF is the deviation of
the temperature kurtosis from the Gaussian value of 3.
The kurtosis was found to increase from 2.98 to 3.61
when ¢,, increases from 0 to 1.1.

4. Summary and conclusion

Direct numerical simulations (DNS) of homogeneous
particle-laden turbulent flows are conducted to inves-
tigate the thermal transport and the particle and fluid
temperature behavior in dilute two-phase flows. Both
one-way and two-way coupling between the particles and
the carrier fluid are considered. The important par-
ameters that characterize the temperature statistics are
the particle response time (t,), the ratio of the specific
heats (), the Prandtl number (Pr), the Reynolds number
(Re;), and the mass loading ratio (¢,,). The influences
of these parameters on both the fluid and the particle
temperature statistics are examined.

In a qualitative agreement with theoretical obser-
vations [28], the DNS results indicate that the stationary
value of the particle temperature intensity is a decreasing
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Table 2

The variations of the particle statistics with the mass loading ratio

P Re; T/ T KRepd) KT3KT?> &r/(€1) =0 r

0.0 49.1 3.81 0.808 0.613 1.0 —0.039
0.4 46.8 2.60 0.531 0.580 0.543 0.103
0.8 41.8 2.27 0.424 0.501 0.455 0.243
1.1 37.3 2.17 0.371 0.446 0.439 0.319
0.8 49.1 3.81 0.808 0.485 0.348 0.238
function of 7,, « and Pr. The particle temperature inten- References

sity is also a decreasing function of Re,. However, the
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mainly dependent on the large scales of the flow can
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response time of the particles is less than the Kolmogorov
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Our results reveal several important physical features
of thermal transport in two-phase turbulent flows and
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of thermal transport in non-reacting and reacting
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[1] G.M. Faeth, Mixing, transport and combustion in sprays,
Prog. Energy Combust. Sci. 13 (1987) 293-345.

[2] J.K. Eaton, J.R. Fessler, Preferential concentration of par-
ticles by turbulence, Int. J. Multiphase Flow 20 (1994) 169—
209.

[3] J.B. McLaughlin, Numerical computation of particles-tur-
bulence interaction, Int. J. Multiphase Flow 20 (1994) 211-
232.

[4] C.T. Crowe, T.R. Troutt, J.N. Chung, Numerical models
for two-phase turbulent flows, Ann. Rev. Fluid Mech. 28
(1996) 11-43.

[5] J.S. Shirolkar, C.F.M. Coimbra, M.Q. McQuay, Fun-
damental aspects of modeling turbulent particle dispersion
in dilute flows, Prog. Energy Combust. Sci. 22 (5) (1996)
363-399.

[6] E.E. Michaelides, Review—the transient equation of
motion for particles, bubbles, and droplets, Journal of Flu-
ids Engineering 119 (1997) 233-247.

[7]1 G.I. Taylor, Diffusion by continuous movements, Proc.
Lond. Math. Soc. (2), 20 (1921) 196-211.

[8] A.S.Monin, A.M. Yaglom, Statistical fluid mechanics, Vol.
2, MIT Press, Cambridge, MA, 1975.

[9] K. Kontomaris, T.J. Hanratty, Effect of molecular diffu-
sivity on turbulent diffusion in isotropic turbulence, Int. J.
Heat Mass Transfer 36 (5) (1993) 1403—1412.

[10] M.S. Borgas, B.L. Sawford, A family of stochastic models
for two-particle dispersion in isotropic homogeneous
stationary turbulence, J. Fluid Mech. 279 (1994) 69-99.

[11] M.I. Yudine, Physical considerations on heavy-particle
diffusion, Adv. Geophys. 6 (1959) 185-191.

[12] G.T. Csanady, Turbulent diffusion of heavy particles in the
atmosphere, J. Atmos. Sci. 20 (1963) 201-208.

[13] M.W. Reeks, On the dispersion of small particles suspended
in an isotropic turbulent fluid, J. Fluid Mech. 83 (1977)
529-546.

[14] A. Nir, L.M. Pismen, The effect of steady drift on the
dispersion of a particle in turbulent fluid, J. Fluid Mech.
94 (1979) 369-381.

[15] R. Mei, R.J. Adrian, T.J. Hanratty, Particle dispersion in
isotropic turbulence under Stokes drag and Basset force
with gravitational settling, J. Fluid Mech. 225 (1991) 481—
495.

[16] K.K. Kuo, Principles of combustion, John Wiley and Sons,
New York, NY, 1986.

[17] W.H. Snyder, J.L. Lumley, Some measurements of particle



F.A. Jaberi/Int. J. Heat Mass Transfer 41 (1998) 4081-4093 4093

velocity autocorrelation functions in a turbulent flow, J.
Fluid Mech. 48 (1971) 41-47.

[18] M.R. Wells, D.E. Stock, The effects of crossing trajectories
on the dispersion of particles in a turbulent flow, J. Fluid
Mech. 136 (1983) 31-62.

[19] S. Schreck, S.J. Kleis, Modification of grid-generated tur-
bulence by solid particles, J. Fluid Mech. 249 (1993) 665—
688.

[20] P. Givi, Model free simulations of turbulent reactive flows,
Prog. Energy Combust. Sci. 15 (1989) 1-107.

[21] J.J. Riley, G.S. Patterson, diffusion experiments with
numerically integrated isotropic turbulence, Phys. Fluids
17 (1974) 292-297.

[22] K.D. Squires, J.K. Eaton, Measurements of particle dis-
persion obtained from direct numerical simulations of iso-
tropic turbulence, J. Fluid Mech. 226 (1991) 1-35.

[23] S. Elghobashi, G.C. Truesdell, Direct simulation of particle
dispersion in a decaying isotropic turbulence, J. Fluid
Mech. 242 (1992) 655-700.

[24] L.M. Pismen, A. Nir, On the motion of suspended particles
in stationary homogeneous turbulence, J. Fluid Mech. 84
(1978) 193-206.

[25] K.D. Squires, J.K. Eaton, Particle response and turbulence
modification in isotropic turbulence, Phys. Fluids 2 (7)
(1990) 1191-1203.

[26] S.L. Soo, (Ed.), Multiphase fluid dynamics, science
press/grower technical, Beijing/Sydney, 1990.

[27] A.A. Shraiber, L.B. Gavin, V.A. Naumov, V.P. Yatsenko,
Turbulent flows in gas suspensions, Hemisphere, New
York, NY, 1990.

[28] L.P. Yarin, G. Hetsroni, Turbulence intensity in dilute
two-phase flows. II Temperature fluctuations in particle-
laden dilute flows, Int. J. Multiphase Flow, 20 (1) (1994)
17-25.

[29] T.W. Park, S.K. Aggarwal, V.R. Katta, Gravity effects on
the dynamics of evaporating droplets in a heated jet, J.
Propulsion and Power 11 (3) (1995) 519-528.

[30] Z. Warhaft, J.L. Lumley, An experimental study of the
decay of temperature fluctuations in grid-generated tur-
bulence, J. Fluid Mech. 88 (1978) 659.

[31] S. Tavoularis, S. Corrsin, Experiments in nearly homo-
geneous turbulent shear flow with a uniform mean tem-
perature gradient. Part 1, J. Fluid Mech. 104 (1981) 311-
347.

[32] R.M. Kerr, High-order derivative correlations and the
alignment of small-scale structures in isotropic numerical
turbulence, J. Fluid Mech. 153 (1985) 31-58.

[33] W.E. Ranz, W.R. Marshall, Evaporation from drops,
Chem. Engineering Prog. 48 (1952) 141-173.

[34] G.M. Faeth, Evaporation and combustion of sprays, Prog.
Energy Combust. Sci. 9 (1983) 1-76.

[35] A. Berlemont, M.S. Grancher, G. Gouesbet, On the La-
grangian simulation of turbulence influence on droplet
evaporation, Int. J. Heat Mass Transfer 34 (11) (1991)
2805-2812.

[36] C.T. Crowe, M.P. Sharma, D.E. Stock, The particle-
source-in cell (PSI-cell) model for gas—droplet flows, J.
Fluids Engineering (1977) 325-332.

[37] G.B. Wallis, One-dimensional two-phase flow, McGraw-
Hill Book Company, New York, NY, 1969.

[38] P. Givi, C.K. Madnia, Spectral methods in combustions,
in: T.J. Chung (Ed.), Numerical Modeling in Combus-
tion, Taylor & Francis, New York, NY, 1993, pp. 409-
452.

[39] F.A.Jaberi, R.S. Miller, C.K. Madnia, P. Givi, Non-Gaus-
sian scalar statistics in homogeneous turbulence, J. Fluid
Mech. 313 (1996) 241-282.

[40] V. Eswaran, S.B. Pope, Direct numerical simulations of the
turbulent mixing of a passive scalar, Phys. Fluids 31 (3)
(1988) 506-520.

[41] L.X. Zhou, (Ed.), Theory and Numerical Modeling of Tur-
bulent Gas-Particle Flows and Combustion, CRC Press,
Florida, U.S.A., 1993.

[42] C.T. Crowe, J.N. Chung, T.R. Troutt, Particle mixing in
free shear flows, Prog. Energy Combust. Sci. 14 (1988) 171—
194.

[43] S.K. Aggarwal, Relationship between Stokes number and
intrinsic frequencies in particle-laden flows, AIAA J. 32 (6)
(1994) 1322-1325.

[44] J.O. Hinze, Turbulence, McGraw-Hill Book Company,
New York, NY, 1975.

[45] F. Anselmet, H. Djeridi, L. Fulachier, Joint statistics of a
passive scalar and its dissipation in turbulent flows, J. Fluid
Mech. 280 (1994) 173-197.

[46] J. Mi, R.A. Antonia, F. Anselmet, Joint statistics between
temperature and its dissipation rate components in a round
jet, Phys. Fluids 7 (7) (1994) 1665-1673.



